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A theoretical study of parametric absorption in electron cyclotron resonance heating (ECRH) of
tokamak plasmas is presented. The problem of primary and secondary decays including their
temporal and spatial growth rates is studied. In the nonlinear phase of development of the excited
waves, a cascading saturation mechanism is invoked for both convective and absolute
instabilities. Anomalous absorption frequencies and anomalous absorption lengths are evaluated

for a variety of parametric excitations.

I. INTRODUCTION

The excitation of intense high-frequency plasma waves
represents a promising method for additional heating of to-
kamak plasmas. The recent development of gyrotrons (elec-
tron-cyclotron masers)' has made it possible to carry out
electron cyclotron resonance heating (ECRH) in tokamaks.?
Most papers on plasma heating in this frequency range have
dealt with mainly linear theory® while, more recently, a few
papers* have considered nonlinear interactions of a driver
pump with plasmas.

The electric field intensities generated by current gyro-
trons are sufficient for exciting parametric processes in toka-
mak plasmas.® Consequently, nonlinear processes in toka-
mak plasma heating at ECR could play a significant role.
Parametric excitations in the electron cyclotron frequency
range (ECFR) have also been observed in other plasmas.®
Understanding of parametric excitations in a plasma driven
with external e.m. power in the ECFR is important not only
for heating but also because it presents a possibility of find-
ing new means for probing and controlling of the plasma
density and current profiles.

This paper is organized as follows: Parametric excita-
tions and their thresholds are studied in Secs. II and II1, and
secondary decay processes in the case of absolute and con-
vective instabilities in Sec. IV. In Sec. V we give the nonlin-
early absorbed energy through cascade saturation and sum-
marize the anomalous frequencies and absorption lengths
for the various parametric excitations. In Sec. VI we outline
some of the limitations of cascade saturation mechanism,
and in Sec. VII we give the conclusion emphasizing the con-
sequences of parametric processes in contemporary toka-
mak experiments.

Il. PARAMETRIC COUPLING IN THE ECFR

In what follows we shall consider nonlinear interac-
tions of a pump in the form E(¢ ) = E, sin{w,f — kyr) with a
low B, strongly magnetized plasma ({2, >w,,). The linear
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phase of development of parametric instabilities is described
by the nonlinear (with respect to the external electric field),
mode-mode coupling dispersion relation obtained through
the well-known plasma dielectric permittivity formalism;'°
it can be written as follows:

e(—ni

=

Here € = ¢(w,k)=¢, is the low-frequency plasma mode di-
electric permittivity; @ and k are the frequency and the wave
vector of the low-frequency mode; ¢€*™=¢lw
+ nwg,k + nky)=e€, is the high-frequency magnetized
plasma mode dielectric permittivity; ® + nwg, k + nk, are
the frequencies and the wave vectors of the side bands
(Stokes and anti-Stokes); y'”=y, (w,k) and y P=y, (0,k) are
the low-frequency ion and electron plasma susceptibilities,
respectively. The coefficients e'* ™ describe the coupling of
the upper and lower sidebands with the low-frequency plas-
ma mode through the pump electric field. The coupling coef-
ficients, maximized with the following selection rules:
nogko)=wy (ky) + o(k) and nko=ky + k {0y =w + naw,
and k, =k + nk,), are given by

P — '(ki”ko)rEBlzn Kk , (2)
T ko nkgl™ ()47
where w, and k, are the angular frequency and the wave
vector of the pump; and rgy is the vector of electron oscilla-
tion amplitude in the electric field of the pump and confining
{toroidal) magnetic field B It is given by

(+ n)
€9 4+ YOl + y© (%E-T + ) =0, n=12... (1)

wfz’ —iw()‘oe 0
G0 @ -0 .
Tep =1 iwyfd, W) 7 (3)
0] m,wj
wy~027 w;g—0;
0 0 1

In (3) E, is the complex electric field amplitude of the pump
in vacuum, and e and m, the charge and mass of electrons,
respectively.

In the case of parametric decay processes [e! T ™ is then
neglected in (1)] the parametric dispersion relation (1) pre-
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dicts the excitation of a high-frequency mode with frequency
wy and low-frequency mode with frequency o =wo,
— kg'V,,;, where @, is the low plasma eigenfrequency and
V, = — (0 Re €,/3ky)/(d Re €, /0w, ) is the group veloc-
ity of the high-frequency mode. In what follows, however,
this finite-wavelength low-frequency shift will not play a sig-
nificant role because we shall be interested in the excitation
of high-frequency magnetized plasma modes with V, 1k,.
From (1) the parametric decay growth rate y=y,, for weak-
ly damped waves, is found to be

s = [(e ") — (el )] [1 + Re x. (@k)]*

1 —
X(aRee,_) <3Re€H) ! ‘ 4
ow W=, dw

Here ¢\~ ™, given later in (10), is the threshold value of the
coupling coefficient. Expression (4) is obtained under the as-
sumption that y» ¥y, , where yy and y, are linear damp-
ing rates of high- and low-frequency modes given by
vy = —(Imey)/(OReey/dwy), and y, = — (Ime. )/
(0 Re €, /0w, ), respectively; in this case '~ "y.el— ™. For
¢\, " = 0, the expression (4) will be referred to as the dissipa-
tion free parametric growth rate y,,. For the case
¥y <¥ <y, the parametric growth rate could be obtained
by replacing ¥ in (4) with yy, . This is the case, for example,
in isothermal plasmas (7, ~T;) typical of tokamaks when
the low-frequency plasma mode is heavily damped (quasi-
mode) i.e, ¥ ~@r .

For the high-frequency dielectric permittivity appear-
ing in (1), in the long-wavelength region (k 2p2&l, krh,
<1, p, the electron Larmor radius, rp, the electron Debye
radius), we have the following relation'":

W= Wy

w% cos’d ) sin’ 0 w}, cos’ @
6H(ﬂ),k) =1 2 - 5 — 5
© w'—N; [}
2 in2
w?, sin” 6
pe .
— =+ - (5)
o’ —N?

The collisional dissipation of magnetized plasma eigen-
modes is given by

2 ‘ 2, .2 n 2
€oon = a),:) :" (cos2 8 +sin’ @ ﬁ(a—f:i_-%);—)) (6)

If 2, R w, the cold magnetized plasma modes are

oy ={02,[1 + (@}/20])sin* 6 ];@,.|cos 6 }=w, .
(7)

Parametric excitation of eigenmode @_ =, |cos |
[Gould-Trivelpiece, (G-T) mode or oblique Langmuir
wave] and the corresponding heating of the plasma by this
wave was already considered in Refs. 5, 6, and 12 and will
not be treated here. It should be noted, however, that in the
case of tokamak plasmas with w,,, > {2, the frequency curves
oyl x), 2.(x), and w,.(x) [Fig. 1(a)] are overlapped and
consequently the shaded area on the tokamak cross section
[Fig. 1(b)] presents the region where simultaneous parame-
tric excitation of the upper-hybrid wave (UH), the electron
cyclotron wave (EC), and G-T modes can occur.
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In the case of nearly perpendicular propagation, @ is
reduced to the upper-hybrid mode o}y = w}, + {2;. Per-
pendicular propagation in this frequency region also in-
volves electron Bernstein modes with a frequency spectrum
given, approximately, by"!

0 =l 2, |{1 + [1, (k22K P, e~ 7Y, (8)

and associated dielectric permittivity

0)2 + o nZA (k 2p2)
€enlw k) =1~ L i L
a0 w n=2w k?pl(w — ni,)
. n kzrzDe Vei
+int2 (9)

(k202 nle2.|
where the last term, due to collisions, is evaluated for
k3l <l

In the low-frequency domain there exist high-frequen-
cy ion-sound waves IS (H) [0, =kV,V, = (T, /m;)"'*],
low-frequency ion-sound waves IS(L) (w, =kV, cos8),
ion-Bernstein waves (IB)(w, =m|2:|{1 + [I.(k*0})/

~ k2, ]e_kz" ,z”’ and lower-hybrid waves (LH)[w,

~w, (1 + 0k /27)7).

In what follows we shall be interested in the parametric
excitation, by ordinary (O) and extraordinary (X) driver
pumps, of modes with frequencies equal to the local electron

{ F~D4(Ro) | X-DRIVER PUMP

TOKAMAK AXIS
!

(b)

O-DRIVER PUMP

FIG. 1. Driver pump frequencies (X and O modes) in terms of x (distance
from the tokamak axis] are shown. On the cross section of the [Fig. i(b))
tokamak, a region of anomalous absorption of driver pump energy is shown.
“A" denotes [Fig. 1(a)] a parametrically excited mode with local electron
cyclotron frequency and “B” a parametrically excited upper-hybrid wave.
Anomalous absorption length is denoted by /; .
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FIG. 2. Index of refraction N = cky/w, (k, is the wavenumber of the driver
pump), for right-hand and left-hand polarized X-driver pump is shown for
the case of strongly magnetized plasmas: £2%( x}=(1 + y)w;( x), where
0<y<1. Herew, { x} = [@, (X)/2)¥5 +y — J1 + p) is the left-hand cutoff
frequency, wg( X} = [@,. x)/2](J5 + y — V1 +y) is the right-hand cutoff
frequency, and 0y ( X) = w, ( x2 + y. Low-frequency parametrically ex-
cited waves are indicated by w, . R, is the major radius of the torus.

cyclotron frequency coupled to the above mentioned low-
frequency modes. Accessibility of these modes in a tokamak
is shown in Figs. 1, 2, and 3.

lii. PARAMETRIC THRESHOLDS IN THE ECFR

From the parametric dispersion relation (1}, the thresh-
old value for decay processes is found to be

NORMAL INCIDENCE

N2 O-DRIVER PUMP
i

Wpeld
NZs - 2 i w~fe
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CliIOFF ! i
pr(Ro) ﬂﬁo) wo w

FIG. 3. Index of refraction for the O mode. Other quantities are the same as
in Fig. 2.
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feln ™}

s 1 (ae,,) (aeL)
AT +Rexe(w,k)]2\ 0w Jo=wy\ 00 Jw=w,
(10)

This expression gives us the so-called dissipative threshold of
convective parametric instabilities in homogeneous magne-
tized plasmas. The dissipative threshold values for absolute
parametric instabilities are higher, and given by '*'¢

Yao = [Vu Vel + v | Vull/2W\VullViL =y, (1)

where 7,4, is ¥, of (4) with e,,, = 0. Here V5 and ¥, are
group velocities of high- and low-frequency parametrically
excited modes.

Taking into account linear dephasing due to weak in-
homogeneity of the plasma, the conditions that the linear

instabilities evolve to large amplitudes are '+1
Yao>(2ra/m) and (md)>1, (12a)
for initially evolving absolute instabilities, and
Yao>2Uvy +v.)/m and (7Ad)»1, (12b)

for initially evolving convective instabilities. Here A =37,/
K|VaVi], where «'=(d/dx)[kox)—ky(x)~— k. (x)],
gives the spatial rate of dephasing.

In the important practical case of absolute parametric
instabilities evolving in an inhomogeneous plasma and with-
in a pump of finite extent, the threshold involves three condi-
tions, giving both upper and lower bounds on the finite ex-
tent of the pump, and a lower bound on the dephasing due to
the inhomogeneity. For a Gaussian-shaped pump having a
maximum coupling ¥,, and effective extent 2L [ie.,
Y40 exp( — x2/L %)}, where + x is along the direction of the
(oppositely directed) group velocities, and including linear
dephasing due to weak inhomogeneity of the plasma, the
three conditions give approximately'*'*®

. , 1/2
’;—L<2.5; i.e.,yd0>i‘£'l2"?’/é'—, (13a)
) .
1/2
CZOL > 1, i.e., }’do >J—’/_H—Zli—, (l3b)
’ ’ 172
£ 515 e ydoz(il—'%s—’/L—') , (13¢)

Ap
wherea,=v,,/|Vy V. |''? and where each condition is also
expressed to show explicitly the requirement on y,,, i.e.,
maximum pump amplitude. Note that the last condition
(13c) is essentially the same as the second condition in (12).

In what follows we shall be interested in bulk plasma
heating, which is realized through collisional dissipation of
the high-frequency modes. If the dissipation of high-fre-
quency modes is noncollisional {Landau or electron-cyclo-
tron damping) the threshold value increases exponentially.
For the decay wavenumbers &, satisfying the following con-
dition: k, €k, where

0?2 wa \21 -1
[N SR L — 2[ln( )] T
Wy ~ W, — 2 Vi
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TABLE I. Decay wavenumbers of primary excitations for parametric channels in the ECFR. The decay wavenumber is a function of layer position in real
space [Fig. 1{b)], i.e., k; = k,[w, — £2,(x)). Consequently, different layers will have different decay wavenumbers. The cold and hot modes are defined by

(34)37).

Primary decay
processes

Decay wavenumber

Wp=Wyy + W1y

Wy = gp + D50 51iWrc

kyp. = (znn!w_"_;___

“cold” modes “hot” modes
(_’Sr_)z - 2.(.%:%")('_";) ke 20w T
Py oy . a Pe 3 0.0, T o uH
20,(w, — 2.) \'?
kdpe=(——~——(:z ') kyp.€ln=1
pe
Ilﬂ 02 V2n - 1)
e I 1
@ w, ) e
V, =(T./m)'"?

Wy = Wyy + W , ky = wy— @yyl/V,

dissipation of high-frequency modes is dominantly colli-
sional. In Table I we give decay wavenumbers for variety of
parametric excitations.

From (10) and (2) (k,~0 in the case of primary excita-
tions) for principal harmonic excitations (#n = 1) and for to-
kamak parameters n, =102 cm ™3, T, =200 eV — 1 keV,
fo = lwo/2m) 2 [£2, (Ry))/(27) = 10-40 GHz one finds dissi-
pative threshold electric fields in the range E, =30 — 120 V/
cm. The corresponding power flux is I, ,,, = 2 — 50 W/cm®
and, if the area of electron resonance is Sz 100 cm?, the
threshold power is P, =200 — 5x 10° W. The threshold
values taking into account plasma inhomogeneity [74 = 1,
see Eq. (12)] can be obtained from (10) by substituting y,, and
vy, with Vy/L, and V,/L,, respectively, where
L,= [17'/(1\"),‘ —R | 112 Taking, typically, L, =104, we find
the threshold field due to plasma inhomogeneity is approxi-
mately an order of magnitude larger, i.e., Ey 4, 2 1(kV/cm),
and hence 7, 2 1(kW/cm?) and P, ,,, > 100 kW; these are
typical in current experiments on tokamaks with plasma pa-
rameters in the above given range (Versator II, FT-1, ISX-B,
PLT, T-10, and JFT-2). Comparing (13a} and (13c) we note
that for absolute instability the pump power flux would have
tobe about (L /L) times the pump power flux threshold due
to plasma inhomogeneity. Given that L»L,, and that the
pump power flux is just sufficient to overcome the dephasing
effect due to inhomogeneity, parametric excitations will
evolve as convective instabilities.

In the case of high-density and high magnetic field to-
kamaks with parameters in the range n, ~10" cm™>,
Jo~100-200 GHz, and T, % 1 keV (like Alcator C and T-15)
the threshold power flux is I, ;> 10 kW/cm? In current
experiments the maximum power flux available is around 10
kW/cm?®. Consequently significant parametric processes at
ECR are not to be expected for these tokamaks until the
power flux is raised up by an order of magnitude.

IV. SECONDARY DECAY PROCESSES

As the saturation mechanism of the parametrically in-
duced turbulent plasma state, we consider secondary decays
of high-frequency magnetized plasma modes wy, (k) into
other high-frequency @y (ky,) modes coupled with low-fre-
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quericy modes w, (k,,), etc. This mechanism, as it will be
shown later, yields a high absorption efficiency. In the lower-
hybrid frequency range (LHFR} it was used in Ref. 12. In the
case of secondary decay processes the finite wavelength of
the driver pump (high-frequency longitudinal mode) must be
taken into account in contrast to the case of primary decays
where the dipole approximation (k, = 0) is valid. The para-
metric mode-mode coupling dispersion relation (1) describ-
ing secondary decay processes has the following form (prin-
cipal harmonic excitation n = 1):

E((z)f;+ 1 ’k5+ 1 )6((‘)5-# | I wf;kf;q- 1 kf)
krzi+l [(kf-fl —k"H)r[E"}’]2 _(wL kL )
4 (kb -k T

X[1+Xe(w,';+,,k,f+,)]=0. {15)
Here (w, ,k, ) are the frequency and the wave vector of the
nth cascade, and 7} is the oscillation amplitude of electrons
in the high-frequency electric field of the nth cascade [see

(3)]-

A. Absolute secondary decay instabilities
From (15), the parametric growth rate of the nth cas-

cade is found to be
_Kaa [k —kares ]’
4 k,, 1 —k,J
X[l +Rexg(wn+l’kn+l)]2

X(aReéL)—l (aReeH)—'
dw dw

e

(16)

W= wy W=y

Here 0, =0,k — kX, )and 0w, =, (k% ). Expression
(16) is obtained under the assumption that y, > y%,y%, where
¥, is the temporal growth rate of the secondary decay insta-
bilities. In the model of a homogeneous plasma, if V, V; <0
the parametric decay instabilities are absolute if'*'* [see {11)]

%VL(VH/VL)”2<7’,. <@p. (17
In (17) the demand for the discrete (line-like) turbulence
spectrum (v, <w, ) is also taken into account. Due to the
inhomogeneity of tokamak plasmas and for weaker driver
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pumps, parametrically excited high-frequency instabilities
could become convective and, consequently, the instability
description by a temporal growth rate is not adequate.

B. Convective secondary decay instabilities

If ¥, V, >0 the energy of excited waves is effectively
convected away from the region of primary excitation. Con-
sequently, processes in that region may be linear with respect
to electric field amplitudes of excited waves. However, on
the length /~ 1/(Im k) amplification of the high-frequency
mode electric field could be significant and nonlinear dissi-
pation of the modes dominant. The maximum. spatial
growth rate is

Imky = ¥0/\V. Vi (18)
Here 7, is the dissipation-free temporal growth rate and ¥V
and ¥V, group velocities evaluated at k =k, —k; and
k = k,, respectively. (In Sec. I1, Im &, was identified as a.)

The expression (18) is valid if the excited modes are
weakly damped, ie., ¥ > 7.,y . In the case of excitation of
low-frequency quasimodes (LFQM) the inequality
Y <Y <7y is satisfied. Then, for strong pumps,*'

Imky =(yy,/Vy V)2 (19)

Note that in the case of very high group velocities of high-
frequency modes amplification occurs on a large distance
which could be larger than the dimensions of interaction
region'? or even than the (radial) dimensions of the tokamak
plasma. In that case nonlinear dissipation of excited waves
does not play any significant role. However, we shall be in-
terested in relatively slow waves, longitudinal waves, and
their saturation distance /,(/, is the anomalous absorption
length to be defined in Sec. V C).

V. NONLINEARLY ABSORBED ENERGY

In the model of cascade saturation the nonlinearly ab-
sorbed power density is given by

Q" = 2yo(Eo) W), (20)
in the case of absolute instabilities, or by
Q" =2 Im[ko(E)1Vy W, (21)

in the case of convective instabilities. Here y,(E,) and
Im[k,(E,)] are primary temporal and spatial growth rates,
respectively, and W \(w,,k {) represents the energy contained
in the first cascade of the high-frequency mode and is given
by 13
H 2
Wiwnk ) = (i[w Re €”(w,k)]) [Elo)l”
dw @ = (k') 87

(22)
In order to find Q, as is evident from (20) and (21), we must
know the turbulence spectrum W, (k,w) and particulary
W,(ki'w,). The answer can be obtained from the turbulence
theory based on cascading saturation mechanism. A com-
plete development of turbulence theory based on nonlinear
kinetic equations in the LHFR is given in Ref. 12. Here,
however, we shall give a simple power-balance formalism of
turbulence processes in the ECFR based on the cascade satu-
ration mechanisms.
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A. Power balance theory of cascading processes in
the ECFR

The cascade saturation mechanism was first used in
Ref. 16 for isothermal plasmas and later in Ref. 17 for consi-
deration of nonisothermal plasmas. A power balance theory
for isotropic plasmas was proposed in Ref. 18, and for aniso-
tropic plasmas in Ref. 6.

We shall consider a quasistationary turbulence spec-
trum consisting of N cascades with frequency width
Sw ~max{y,,¥y,y. ). In the weak turbulence theory ¥, €w,
(and ¥, Sw,)the turbulence spectrum can be considered as
discrete, consisting of N discrete lines located at frequency
intervals equal to @, . In the case ¥ Sw,, a ponderomotive
force affects the low-frequency mode dispersion features and
the mode-mode coupling dispersion relation (1) is no longer
valid. Consequently a strong coupling of excited waves oc-
curs. For y 2w, the turbulence spectrum is continuous and
power-balance theory is not applicable. For high tempera-
ture tokamak plasmas T, > 1 keV the inequality y, <y, is
always valid and consequently the turbulent level of low-
frequency modes is significantly less in comparison with the
turbulent level of the high-frequency modes. Accordingly, it
could be considered that the low-frequency wave energy is
completely dissipated through the linear Landau damping
mechanism (or linear cyclotron damping). This becomes
more pronounced for isothermal plasmas
[y, ~w, ~kVy,Vy = (T;/m;)"’*] when the dispersion rela-
tion (1) describes processes of induced scattering of a driver
pump (external electric field or longitudinal high-frequency
plasma mode) by ions or electrons.

The stationary turbulence spectrum of the high-fre-
quency magnetized plasma modes, in the case of absolute
instabilities, is described by

Yo Wi+ W)

=vuWl+v We+y. Wl +WE ), n>l
(23)

Here y,, (W% + W) represents the power contained in
the nth cascade which is partly, linearly dissipated collision-
ally in the high-frequency mode ¥, W  and noncollisionally
in the low-frequency mode ¥, WE. The flow of energy into
(n + I)th high- and low-frequency cascade is accounted for
by 7. (Wi + Wi

In the case of convective instabilities the power balance
equation takes the following form:

Imk, Vy(Wi+ W5
:YHWnH+7LW5+ImanH(Wf+l + er:+l)!
n>1. . (24)

The connection between the energy content in low- and
high-frequency parametrically excited modes is given by
WEL=(N—n+ 1\ ZLCL yu 1 N (25)
Yo @Op
It is evident from (25) that WL could be neglected in (23) and
(24). In (25), N is the total number of cascades. Substituting
the expression for the parametric temporal growth rate (4)
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into (23), or the spatial growth rates (18), (19), into (24), we
can obtain a turbulence spectrum of high-frequency modes.
In the case of convective instabilities we have

E = Yu E(IkaVH _

= l), n=0.N. (26)
Im ko Vy Yu

In (26) ¥, > Y& ¥, is assumed, E, is the electric field ampli-
tude of nth cascade, and E, is the free-space electric field
amplitude of the driver pump. From (26} with
(Ey = E,, Eo>E,,,) we obtain, for the total number of cas-

cades,

N~3m kol Va| : (27)
Yu o
Putting n = 1 in (26) we obtain
E,SE, (28)

This result is, however, only valid in the case when the pri-
mary growth rate y,(E,) is of the same nature as the secon-
dary one ¥,(E,). [This was assumed in obtaining (26).] The
more general case is when the primary parametric growth
rate is not of the same nature as the secondary one; for exam-
ple when an e.m. wave decays into high- and low-frequency
longitudinal modes and the high-frequency mode decays,
further, into two high-frequency modes; this is possible in
the short-wavelength region (kp, > 1) of second harmonic
electron Bernstein mode (202, —f2, + £2,). In this paper
such secondary decays will not be treated.

Equation (23) (for n = 1) could be solved by means of
the approximation W,=W, [the error is minimum
A=W, —W,, W, =W, +(n— 1J4d]. Thenyo(Eo) = ¥/(E|)
is obtained. From this equation we can find

E, =f(Ey) (29)

Note that (29) is obtained under the assumption of negligible
linear dissipation of the high-frequency cascades (> V)
for the case of absolute instabilities [Eq. (23)], and in the case
of convective instabilities [Eq. (24)] under the assumption
that (1/Im k )<V /vy, i.e., that the amplification length
of the primary excited high-frequency mode is less than its
linear damping length. This is realized if the driver pump

electric field is strong enough.
For the absorbed energy, from (29} and (20) ‘we obtain

Q% =21\ (E){ [f(E,)) /4. (30)
From (30) we see how the secondary decay processes play a
determining role in the energy absorption. In what follows
we shall be interested in the cases when primary and secon-
dary decays are of the same nature, so that

Q™ =2y \(ENE §/4r). (31)

If the low-frequency modes are weakly damped
{(¥> y. ), we obtain from (20), (21), and (18)

anv-_—(VH/VL)l/zQabs, Y>VHsYL- (32)
In the case of heavily damped low-frequency modes (quasi-
modes) the corresponding relation could be obtained from
(20), (21), and (19)

Q<" =y, VH/?’VL)I/ZQabS» Yu <V<¥L- (33)
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The expressions (30)—33) give the relations between the ener-
gies nonlienarly absorbed (through cascading processes) by
convective and absolute instabilities.

In the case of laser-plasma interactions, convective in-
stabilities (due to the inhomogeneity of plasma) always en-
hance [see (32)] the absorption with respect to the absolute
instability. In the ECFR in the case of “cold” modes:

w""=wuh(1—%“’ i i”) (34)
wuh
where 0}, = w?, + 27, and
k 172
m“’=w,h(1+m" k';) : (35)

where w,, = [w,/(1 + @}, /22)"*]. For these modes
VUV = (m,/m;) (0, /02,)€] is obtained. If “hot”
modes are excited

2
w””:a)u,,<1 —-;— Do kfpﬁ), (36)
Wy,
a)“’:a),,,(l 3 kzpzn ;Q T ) (37)
pi Te

and the group velocities ratio is (V' Y7 /VLH )~ (V EB yp LH)
=@, /2, V@, /QNT,/T)> 1, (@, >£2;). Hence in the
case of excitation of “‘hot” modes (convectively unstable) the
nonlinear absorption of energy is also enhanced.

B. Anomalous absorption frequency

In the cascade saturation mechanism energy trans-
ferred from the external pump into the first cascade is colli-
sionally dissipated through N further cascades. The condi-
tion for collisional dissipation of the high-frequency mode
(in a high-temperature plasma it is a weak linear dissipation)
is essential because only in this case is a significant turbu-
lence level of high-frequency modes achieved. In such a situ-
ation the nonlinear dissipation of parametrically excited
high-frequency modes is dominant. The opposite case is en-
countered with low-frequency modes where a strong linear
dissipation is assumed (linear Landau damping or cyclotron
damping); in this case the appearance of low-frequency para-
metric turbulence is excluded.

Based on the law of conservation of energy we can write

=N

Va Wo = 270lEW, =12 2 YuWo VYu~ve. (38)

n=1
The expression (38) is to be considered as a definition of
anomalous  absorption  (collision) frequency. As
W,~W,, ., n>0(as a rule in this saturation mechanism),
then y,(E,) ~ ¥4(E,) which, if the primary and secondary de-
cays are of the same nature, gives (with W, S W)

Vo~ 2V E )~ 2¥o(Ey)- (39)

From (39) it is evident that the anomalous absorption fre-
quency exceeds the electron—ion collision frequency by a fac-
tor of 2[yo{E,))/v.;. In the case of the excitation of low-fre-
quency quasimodes (7, ~ T, typical for tokamak plasmas)

the anomalous absorption frequency has a quadratic depen-
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TABLE II. Anomalous absorption lengths for a variety of decay channels. The geometry employed in evaluating the quantities is as followfvs: B, = (Q, 0, B,), k{, = (ko, 0, 0), E, = {0, E,, 0} for X mode, and
E, = {0, 0, E,} for O mode. The wave vector of excited waves is in the ( y, z) plane. Here « is Boltzmann’s constant. The values for /, are obtained utilizing expressions (40), (31), and (16).
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dence on the external electric field v, ~ E 2 [see (1) and (2) for
n=1]}

C. Anomalous absorption length

The anomalous absorption frequency is to be taken as a
local characteristic of nonlinear absorption processes. A
high anomalous absorption frequency, however, does not
mean, in general, a high nonlinear absorption efficiency. For
this reason we shall define another characteristic quantity,
namely, the anomalous absorption length as a distance (/,)
which is traversed by the external driver pump with group
velocity ¥,, in the time of nonlinear absorption t,; ~(1/v, ).
Accordingly, .

I, =V, [E;/4nQ(E})].

In the ECFR V,, ~c (cis the speed of light in vacuum). Here,
Q (E3)is either (31) or (32) for, respectively, absolute or con-
vective instabilities.

In Table I1 we give the values of /, for a variety of
parametric excitations in the ECFR for thecase y >y, 7..-
The corresponding expressions of anomalous absorption
lengths for low-frequency quasimode excitation (ion-acous-
tic and lower-hybrid quasimode) could be obtained by sub-
stitution for I, :(cl,/4k4vy;)'’?, for the ion-acoustic quasi-
mode, and (cl,/4w;;)"? in the case of the lower-hybrid
quasimode excitation.

It must be noted, however, that the influence of real
conditions (plasma inhomogeneity, finite extent of driver
pump, etc.) are indirectly included in (40) through Q(E 1),
i.e., through the secondary parametric growth rate. This is
only approximate. A more accurate description would have
to use an appropriate turbulence theory for an inhomogen-
eous plasma, including the finite extent of the driver pump.

From Table II, in the case of parametric excitation of
electron-Bernstein modes coupled with lower-hybrid quasi-
modes, the anomalous absorption length is found to be
(n=1)

=232 (f&)z(ﬁe-)z, kyro, S 1. (41)

°T 7 k2R \E, Wpe

Here, A, denotes the free-space wavelength of the driver
pump and 8 = (87n, T, /B §) is the “‘plasma beta.” For reac-
tor-type tokamaks with parameters B,=5-10 T, n, = 10"
cm™3, T, = 1-5 keV, the anomalous absorption length is of
the order of 10 A, if the driver pump electric field is enor-
mously strong E, S 100 kV/cm ( Py»1 MW). For plasma
parameters n, ~2X 10'> cm ™3, T, =200 eV, and B,=~ 1T
(Versator II and FT-1) or n, =2x10” cm >, T, =1 keV,
and B,~3T (PLT) such an anomalous absorption length
could be obtained if E, S 10 kV/cm. This estimate is based
on the model of direct parametric excitation of the EB mode
in region 3 [see Fig. 1(b})]. However, in linear theory the X
mode can then propagate to the upper-hybrid resonance lay-
er'® where linear conversion takes place. Typical mode-con-
version enhancement of the electric field is five times or
more®° so that parametric processes can be induced if E,~ 1
kV/cm, which corresponds to a power flux /,~1 kW/cm?
readily available in experiments.®

(40)
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It is to be noted that (41) is obtained for perpendicular
propagation of an electron-Bernstein mode with pure colli-
sional damping. In the presence of the tokamak poloidal
magnetic field, a more realistic model of electron-Bernstein
mode propagation must account for a finite k, . In this case
the linear dissipation of the electron-Bernstein mode is due
to the Landau and cyclotron damping. We then have
Ve <YLy ~@ Ly, and for the anomalous absorption length
we find

cl1 kI (w0, \V1[E\ -

= 7[? e 53 . - m] ~
y z e

(42)

In the regime far from the threshold (E,» E, ;.. )7 s in (42)
could be neglected and (42) is (k } + k 2)/k} times larger
than (41). In the near-threshold regime, the influence of the
noncollisional damping . is significant and /, given by (42)
is several times larger than (41). This means that the effi-
ciency of nonlinear absorption for this case is reduced.

Let us now consider the launching of the ordinary mode
from the low magnetic field side. As seen from Fig. 1(c), it
reaches the upper-hybrid layer where the excitation of elec-
tron cyclotron waves, with wave vector k at an angle § with
respect to B, [see (7)], coupled to low-frequency modes can
occur. In the case of excitation of the lower-hybrid waves, we
obtain for the anomalous absorption length

=348 (ﬁ)z(ﬁe_)z Yew 1 (&)2
7 kR N\E, ) \o,) oy (sin20) \w,./)
(43)
The minimum value for /, is obtained for waves propagating
atan angle §~45°. From (43)itis also evident that the excita-
tion of lower-hybrid quasimodes (y, y ~@/ ;) is not an effec-
tive channel for nonlinear dissipation of the external power.
In the case of O mode launching from the low field side [see
Fig. 1(c)] parametric processes can also occur in plasma with
n,=~10%cm=3 T, ~1keV,and By=1Tif [,=1kW/cm’.
For these parameters, in the case of excitation of well-de-
fined lower-hybrid waves (¥, ;; S 10~ %w, ), we obtain from
(43) 1, values of 104,

VI. COLLISIONAL AND NONCOLLISIONAL NONLINEAR
DISSIPATION OF PARAMETRICALLY EXCITED MODES

The cascade saturation mechanism is based on linear
collisional dissipation of high-frequency plasma modes.
Consequently, the decay wavenumber k, (see Table I) is to
be located on the dispersion curve of corresponding parame-
trically excited modes where collisional dissipation is domi-
nant. On the other hand the decay wavenumber is a function
of “x” (the distance from the tokamak axis), i.e.,
ky; = flwy — £2,( x)] [see Fig. 1(a)], so that as a function of
*“x,” modes with different k, will be excited. Through cas-
cading processes this mode can enter the region of noncolli-
sional linear dissipation, at which point its saturation cannot
be treated by the cascading mechanism. In the case of an
electron Bernstein mode with perpendicular propagation
linear dissipation is purely collisional, while in the case of
quasiperpendicular propagation there exist regions on its
dispersion curves where noncollisional (Landau and cyclo-
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tron) dissipation is dominant (Ref. 11). For other modes in
the ECFR such a noncollisional region always exists.

In order that collisional nonlinear dissipation be domi-
nant, Nw, is to be less than the hot-plasma dispersion corr-
rection of the corresponding modes. In the opposite case, a
significant amount of energy is transferred into the noncolli-
sional linear dissipation region and can lead to acceleration
of electrons (tail plasma heating). In the upper limit of appli-
cability of weak turbulence theory (y ~@, ) for bulk heating
through cascading processes to be dominant */y, must be
less than the hot-plasma dispersion correction of the corre-
sponding modes. For the excitation of upper-hybrid waves,
this condition gives

Sun (w;e/wuy)k in, k ipg <1 (44)
Note that in the case of very small k; when w,~2,(x)
[which is realized in the vicinity of the line 1, Fig. 1(b)] the
low-frequency mode has a zero frequency and aperiodic in-
stabilities can take place. In this case other saturation mech-
anisms need to be studied. Decay instabilities and the cas-
cading saturation mechanism take place in the shaded region
[Fig. 1(b)] if inequality (44) is satisfied.

Vil. CONCLUSION

In this paper we have been interested in nonlinear the-
ory of parametric processes induced by the external driver
pump in the electron cyclotron frequency range in tokamak
plasmas. It was shown [see (41)—{43) and Table II] that in
both cases of X- and O-mode launching parametric pro-
cesses are unlikely in tokamaks like Alcator C and T-15 un-
less gyrotrons with power fluxes around 100 kW/cm?’ are
used. The situation is different in tokamaks with parameters
similar to those of Versator II, FT-1, and PLT where para-
metric processes and effective cascade saturation mecha-
nisms take place if 7,2 1 kW/cm®. A verification of the cas-
cading mechanism presented would be the observation in
experiments and/or simulations of discrete or semidiscrete
turbulence spectra around Stokes line.

Finally, we remark that in linear absorption the pump
energy is transferred to the electron component of the plas-
ma and, if the confinement time is long enough, part of this
energy is transferred to the ions. However, in nonlinear (par-
ametric) absorption some of the pump energy can be directly
transferred to the ions through the excited low-frequency
modes. Further, cascade saturation processes lead to bulk
plasma heating in contrast to tail heating which occurs with
linear absorption. Typical linear absorption lengths are sev-
eral centimeters and, as shown above, anomalous absorption
lengths are of the same order if 7,2 1 kW/cm?. The recent
observations® of simultaneous parametric excitations and
bulk plasma heating are consistent with our model of nonlin-
ear absorption.
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