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Based on a hydrodynamic Maxwell formalism of a weakly inhomogeneous magnetized plasma,
a mode-mode coupling eikonal relation is derived. Finite wavelength and arbitrary
polarization of a monochromatic driver pump have been taken into account as well as

longitudinal and transverse components of the self-consistent plasma electric field. A weak
turbulence theory method is used to solve the resulting inhomogeneous Volterra-type integral
equation in tensorial form, i.e., an expansion of hydrodynamic quantities over the resultant
electric field (driver pump and self-consistent field) up to the third order. The eikonal
coupling relation thus obtained is discussed for the case oflongitudinal and transverse
interactions.

I.INTRODUCT!ON

In the iast two decades strong attention has been fo-
cused on studies of dispersion features of plasma immersed
in a strong electromagnetic wave ( e.g., Refs. l-3 ). The first
derivations of the noniinear mode-mode coupling disper-
sion relation were based on the interaction of an EM wave
with plasma in the dipole approximation (ko:0, where
ko: wav€flumber of the electromagnetic wave-driver
pump ) . In this case it was possible to treat the initial system
(hydrodynamical and Maxwell and/or kinetic and Max-
well) in the frames osciilating with the corresponding plas-
ma components. This simplified the algebra and enabled one
to obtain the dispersion relation in powers of.E6 (.Eo : inten-
sity of the eiectric field of a driver pump). Taking into ac-
count the finite waveiength of a driver pump (,tnl0), the
transfbrmation into a pure osciilatory system is not possible
because ofthe covariance ofthe wavelength with the chosen
ret'erence frame. In this paper the EM wave-magnetized
plasma interaction wiil be treated in the laboratory reference
frame utilizing the mathematical apparatus of weak turbu-
lence theory. Magnetized plasma is treated in a hydrody-
namic approximation allowing weak plasma inhomogeneity
in the nonperturbed state. T!-re self-consistent plasma field is
described by a full set of Maxwell's equations allowing both
longitudinal and transverse components in the plasma eiec-
tric field.

In Sec. II, model equations for the interaction are pre-
sented. A hydrodynamic approximation with a general force
term is adopted and the external electromagnetic field is as-
sumed to be ofarbitrary polarization. In Sec. III, a penurba-
tion analysis of the hydrodynamic-Maxwell set of equations
for a spatially and temporally dispersive plasma is presented.

n' Presenr address: S-Cubed. a division of Maxwell Laboratories. Inc.. San

Diego, California 92121.

A definition of the nonlinear plasma dielectnc permrttivity
tensor up to the nth order is given. The linear response ofa
weakly inhomogeneous plasma is addressed in Sec. III A.
Since this work is based on a plasma dielectric permittivity
formalism, the dielectric permittivity tensors for a weakly
inhomogeneous plasma in both kinetic form and in the hy-
drodynamic approximation are given. They are subsequent-
ly reduced to corresponding forms describing longitudinal
plasma eigenmodes. In Sec. III B, the nonlinear current den-
sity responses up to third order are evaluated. The plasma is

assumed to be weakly inhomogeneous, so that plasma eigen-
modes can be treated by a V/KB approximation. The WKB
treatment of plasma eigenmodes is given in Appendix B. The
presentation is based on the concept of a mobility tensor for
the "a" plasma component, which can be found in many
textbooks (see for exampie, Ref. 4). A general nonlinear
mode coupling reiation is evaluated in Sec. IV, and discussed
for both local and nonlocal effects. In Sec. V, longitudinal
and transverse interactions are defined in a general way.
Longitudinal nonlinear interactions are treated in Sec. V,
and nonlinear transverse interactions in Sec. VI. In Sec. VII,
applications of this powerful formaiism are discussed.

!I. MODEL EOUATIONS

The initial set of equations has the form

3n-
," +V'(1V,):Q, (l)
dt

av-_i_r_V
dt

V. D:0,

vxE: -

.vv,: L(r* u,xB^) | Fo , (z)
zo\ c / md 

(3)

(4)laB
; a,'
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Equations ( I ) and (2) are the known hydrodynamic mag-
netized plasma equations with force term Fo. In linear ap-

proximation this term, which can be dependent on plasma
inhomogeneity, temperature or temperature gradient, mag-

netic curvature, etc., drive MHD modes unstable.s Max-
well's equations are presented in terms of the electric (D)
and magnetic induction (B) vectors. The system ( 1)-(6) is

closed by D:/(E) or D:/(j) (see below). All quantities
in the initial system are assumed to be functions of r,r (posi-

tion and time), and q=e,i denotes electrons and ions, re'
spectively.

Without the force term, Eqs. ( 1 ) and (2) are referred to
as cold fluid equations. The role of ,F, is as follows. In the

zeroth approximation ( Flo) ) , it is connected to zeroth order
velocity (Vlo') defined here as drift velocity of the "a" plas-

ma component resulting from the gradients in plasma den-

sity, temperature, and curvature of the externai magnetic
field ( see below ) . We assume that these gradients are weak,

so that terms containing Vf,o' in higher order (second and

third ) approximations are neglpcted. Accordingly, the scope

of the present paper is to give the noniinear mode-mode
coupling equation for plasma eigenmodes with weak gradi-
ents. In the zeroth approximation we can write (gradients

are along the x axis and Bo along the z axis)

F f' : - Y n[ot 7 1o> rrLo' - ^ o [ (v lro))' / R :]R"

- frovo,(vlo) - Y;ot;. (7a)

Here n!o) and ?nlo) are the plasma density and temperature
(energy units) assumed to vary slowly in space and time. In
E4. (7a), R" is the vectorized curvature radius of the exter-
nal magnetic field and vo, is the collision frequency between
particles a and P. In the first approximation for the force
term we have

F t" - - Yptr) Trtot - n,vog(V:') - Vrr)), (7b)

wherep is the plasma pressure.The piasma viscosity tensor is
neglected in ( I ) and (2) so that the hydrodynamical system
is closed by a properly chosen plasma state equation. Inclu-
sion ofthe pressure gradient term in (7b) leads to the ap-
pqrrance of thermal effects (warm fluid) in the plasma di-
electric permittivity.The Langevin (frictional) term gives

dissipation in the dielectnc permittivity resulting from colli-
sions. Phenomenologically, plasma kinetic effects (Landau
and cyclotron damping) can be included by formally writing
the dielectric permittivity in kinetic form. A strict proof for
this would consist of the replacement of the hydrodynamic
equations in the system ( I )-( 6 ) by kinetic plasma equations
and repetition of the calculations, beyond the scope of the
present paper. In what follows, the plasma dielectric permit-
tivity tensors will be considered as known, gven within the
framework of linear plasma electrodynamics. According-
ly,we give general expressions for dieiectric permittivities in
both hydrodynamic and kinetic form.

For the resultant electric and magnetic field we assume

E(r,r; : En(r,t) * 5E(r,r), 5E(r,t) (Eo(r,r),

B(r,/) - 8o(r) + 68(r,r), 5B(r,r) (Bo, (8)

where 5E(r,r) and 58(r,t) describe the self-consistent plas-
ma field and Eo ( r,r ) denotes the driver pump. Here we shall
assume arbitrary polarization of a driver pump so that
Eo(r,r) has the foliowing form:

Eo(r,t) : Eo cos(a;ot - lfu . r * 5r,)

a E, cos(a.ror - h. r + 5r). (e)

The notation in ( 9 ) is conventionai. In what follows we shall
need the Fourier transform of (9), which is given by

Eo(a.r,k) : 1(Eoe6. * E,e'6, )6(o - a,lo)6(k - ko)

* |(E6e - 'd' -,u f,,s -'6')

X6(ot*aro)6(k+Itu). ( l0)
From ( 9 ) we have three cases of a driver pump polarization.

(a) Linear polarization:
5o:5r-0, E,=0.
(b) Circuiar polarization:
E,,' E, : 6. lE6l : ]E,l,
(c) Elliptic poiarization:
E6'E, : 0, lEol# lE,I,

In (12) and (13), 1 and -
helicity, respectively.

III. PERTURBATION ANALYSIS ANO NONLINEAR
PLASMA DIELECTRIC PERMITTIVIT!ES

Let us now introduce the constitutive relation D :/(E)
or D :flj), in the form

Vys: li- t dP: 
' '=?.ccdtcdt

V.B:0, j:feonoYo.

(5)

(6)

6n-5,: +rr/2.

(11)

(12)

5o-5,: +n/2. (13)

correspond to right and left

Dl(r,t) : 
l_ _at, J ar,

( l4)

Integration from - co to ", " is a consequence ofthe causal-
ity principle. Knowing that Eqs. ( 1 ) and (2) give
j(r,t1 :7 [E(r,t)], (14) could be transformed, phenom-
enologically, into

X€uG - tt,r -rrg^trt,1trr)Er(r,,/1). (15)

In ( 15 ) we took into account that a collisionless magnetized
plasma is anisotropic so that the dielectric permittivity (e, )

is a tensor. Dependence ofe, on (t - tr) and (r - r, ) de-
notes temporal and spatial plasma dispersion, while depen-
dence on,urr and p rt describes a weakly inhomogeneous and
quasistationary piasma. In what follows, however, plasma
will be assumed to be stationary and weakly inhomogeneous
so that the inhomogeneity scale length I- is much larger
than the scale length of the three-wave nonlinear interaction

- /d\k\-t/2L-l-l \0x/

ll
D(r,r):E(r.r) *4r I j(r,t')dt'

J_*
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where Ak- h-k1 - k2, and, in l-D, Ak : ko., - k r.*
- k ,.,. Here ko.,, a : 0,1,2, have aigebraic values depend-

ing on the interaction geometry. In defining Z it is assumed
that the inhomogeneity gradient is along the "x" axis and k,
and k, are wave vectors of plasma modes in interaction with
the driver pump. We note that

I a,= l_:t_:l l a.a,a,

and that, obviously, ( 1 5 ) gives a linear dependence between
D(r,r) and E(r,r).

Utilizing the substitutions r - r::rt and r - r, : rf,
and applying a Fourier transformation to ( 15), we obtain
(the Einstein sum convention is used throughout)

D!(a,k) : er(at,k,t)E, (ar,k), ( 16)

where ( weak inhomogeneous plasma )

e,,(a,k,r) : 
fo- 

a,, I o* e,,(tf,fi,r)eiatt -ikrt. (17)

Equation ( 15) couldbe generalized to inciude nonlinearities
with respect to E(r,r). Accordingly, we can write

D, (r,t) : D ?G,t) + r IL(r,r),
where

vxlvxtr(r,r) 1 +lg DL(r,t) : - +!DNL(r,r).
c- dt' c' dt'

The Fourier transform of (21 ) in tensonal ,o.- ,.u0. 
(" )

#(u,, - *) E,ko,k) - D ?(o),k,r): D IL(a,,k)

or

M,,(co,k)E,(ar,k) - - Dl'L(@,k),

where M,, is the Maxwell plasma tensor

M,j:€,t (ro,k) - #(u,- T)
Then, a solution of the tensor equation (23 ) is

E,(ot,k) - E;o' (ar,k) - A,,DILta,k).

t'r7\

(23)

(24)

12s )

D )L(r,rt : 
"2, J 

dt,"'dt. ) Or,"'dt, €,t,t,....t.
n:2J

X (r- t;t, - t2;...;tn_ r - rn;r - rr;

f ou,...dk,-r

rl - r2;...;r,-, - r,,r) fl
l: I

f ft.-r
I dt^= I dt,.

J J_-
Fourier transforming ( l8 ) gives

D l{L(ar,k,r) : .8, f dot,'"datn -,

In (25) A, is the inverse Maxwell tensor defined by
Ai"fut,k)M." (a,l,k) :6r, (6r. : Kronecker delta) and

E;o) (@,k) is the solution of linear electrodynamics (D lut

=0).
Using the perturbation method6'7 ( weak turbulence ap-

proach) in (1) and (2), that is expanding hydrodynamic
quantities over the electric fieid

n(r,t) : nnQt rt,p,"r) + ntt)(r,t) + n\2)(r,t) + n(3)(r,/;,...,

V(r,r) : Y r(p, rt,1^trr) + Vttt (r,t)
(26)

I Yt2t 1r,t1 1 V'3)( r,/),...,

j(r,k): ioQtp,p.rrl + j(')(r,t) + j(')(r,r) + j(3)(r,r;,...,

we obtain a system of iterative equations describing the non-
linear processes up to the third order with respect to the
resultant electric field (driver pump field and self-consistent
field). The nonperturbed state (zeroth approximation) is

defined by n6, Vs, and jo, and according to (26) is weakly
disturbed by the external and self-consistent plasma
fields.The smallness indicators p., and p2 are meant to em-
phasize that the slow variation of the equilibrium in space
(as a result of inhomogeneity) and time (resulting from
mode coupiing, instability, etc. ) are, in general, not small to
the same order. In the present calculation, we retain only
first order variation in a"r.

A, Linear current response

In the zeroth approximation we have

X€ij, j,,..., j,(ar,k;a.r,,k,;...;ron - ,,k, - , ,r)

XE,,(a - @t,k - k, ). ..E,"-,

X((nn- 2 -@n_rik,_, - k, _r)Ei"

X(@n_,,k,_1). (19)

From ( 19 ) a definition of nonlinear dielectric permittivity of
nth index follows in the form

€,j, j,,.... j^(ro,k;ar,kr;...;ton - 1,kn - 1)

: f' a, ,'-' f" dt, s'-,',. . . l* 0,. , si-n - "n 
- 'Jo Jo Jo

^-ft,-rr^-t
te

(20)

For symmetry properties of the noniinear dielectric permit-
tivity given by (20), see Appendix A.

Let us now aralyze Maxwell's equations. Applying the
curl operator V on (4) we obtain an equation describing the
nonlinear propagation of plasma waves:

E,tGr,rt),(18)

(27)

and for the unperturbed hydrodynamic velocity Vo,

Vo=Vp, where V, is the drift velocity vector as a result of
the force term Fo. The drift velocity resuiting from gradients
in unperturbed density (zlo)) and temperature ( ?"!o), ener-
gy units) is8

Yf' : (c/e.n[o)Bf) [Bo)<vln;o'?"1"') ],
and in the case of magnetic field curvaturea'5

Vf;, : (cm./e,Bf;) (BoxV In .Bo) ( V2",./2 + Y'"t).

In the above expressions it was assumed that the magnetic
field is along thez axis and gradients of n[o',T lo) along thex
axis. In the first order approximation from ( I ) and (2) we
obtain

Q?+o, r.:(L+) ,

dx \no dx /

x I ar, -"'' I dr, e- """"' I ar, -

\€,j,j,,...,,^(t,t;t pt fi..,ltn- 1,r, - I ).
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)nt-t'
* + nlo'vv','' + ntt)YVLo' a vl,t)Ynt-o) : o, 128)

dt

dv'-t' e - e-

dt m'c md 
eg)

System (28) and (29) with Maxwell equations (3)-(6) de-

scribe eigenoscillations (Er=0) of weakly inhomogeneous
piasma in the hydrodynamic appoximation (see, e.g., Ref. 5

and references therein ). Using ( 28 ) and (29), we can obtain
eikonai equations for plasma eigenmodes ( see Appendix B ) :

lk'6,, - k,ki - 1a2/c21e,,(ar,k,r) | : Q. (29',)

In (29'), e,, (a,k,r) is the usual dielectnc permittivity tensor
of a weakly inhomogeneous magnetized piasma in hydrody-
namic appoximation. From (29') we can obtain k: k(r)
(for given a-l) and accordingly the eikonal function
t!(r) : "fk(r) . dr. Note that in the case of homogeneous
plasma, e (ot,k,r) -e (ot,k) and (29') is referred to as a dis-
persion relation, giving ar : to(k), the frequency spectrum
for given k. From (28) and (29) we have

nL') : i(e./m,)no(k,/a)l!1') @,r)E,(a,k), (30)

vL'.) : i(e,/m,)llf)(a,r)Et (ar,k), (31)

where

l(;f) (a,r) : - (a2 /a2p,)x!f) (co,r). (32)

Here ylf) (ar,r) is the linear susceptibility of the "4" plasma

component including weak inhomogeneity. It is given in
general form as8 (the inhomogeneity gradient assumed to be

along the x axis)

x:i") : 1 + (, - * *) r" [ei;' (ot,kg- 6, ],

where e,!r) is the partial tensor of the dielectnc permittivity
of the "a" plasma component. It can be found in standard
textbooks on piasma physics (see, for example, Refs. 4 and

8 ) allowing plasma parameters to depend on x. In the case of
longitudinal eigenmodes of a weakly inhomogeneous Max-
wellian piasma, the kinetic form of e, is
e!|'\co,ks!

- eto) (a,kl) : | + lco?. G) / k2 v?r" Q)f

x/r- i o)

\ , :u- * tD - n{1" (x)

x A,fz,(x) ]1"* l0,,Gl1),
where

r -(x):, .*n( - +) l._.,r(f) r,,

zo(x): lk, p"G))', 0,o(x):
ro - nQ"(x)

lk,lVr" (x)

Here, Qo and Vro are the cyclotron frequency and thermai
speed of the "a" particle, respectively, andp, (x) is the "4"
particle Larmor radius. The hydrodynamic approximation,
which would follow from Eqs. ( I )-(6), follows fromzo -0,
B no - @, (D -to * ivo. The power of using the permittivity is
that either the krnetic or hydrodynamic form can be used

without altenng the formaiism.
Note that T *(x) can be expressed in terms of tabulated

Kramp functions ll(x) in the form

T'i' lP ^, 
(x ) ] : - lu;-/ 2 0,, G ) ll/ (/3 

^" 
I x I /,12l.

Also,l l''tz"): exp( - zo)1,(2.),whereI, isamodified
Bessel function of the order "n." The solution of Eq. (29)
could be written, aiso, in the form

V f,t.,) 1o,k1 : pli"' @,k;x) E, (ot,k),

(35)

(38)

(3e)

(40)

which gives the definition of the mobility tensor of the "4"
plasma component pli")@,ks). From (32) and (33) we

have

pli"t @,k;x) : - i(eo/m,)(a/ot2r.)x1,"'(eo,l<;x). (34)

The current density in iinear approximation is

-/ 
(')(r,r) : I e.nlt' V Lo' + | e,nf,o) V f,i\

After applying the Fourier transformation (FT) we obtain

i f,i, (o,k) : e !,"' (at,kx) E, (co,k), ( 36)

where f [,") (a,k:x) is the conductivity tensor of the "a" plas-

ma component given by

e lf ' 
( co,k;x) : - i (e')" n J m 

" ) 
(o / a). ) xlf ' (a,k;x) .

( 371

B. Nonlinear current response

In the second order approximation we have

t!!- 
" u:,XBo* (vro,v)vy, + V:',Y)vy'

0t froc

:'o y,rrrB0) - (Vrr)V)Vrr),
md

+. nto'Yvy) a v!2)vnlo)

l vfr)vn!') + /rlt)vv:') :0.
In (38) and (39) we shall neglect terms in I/,!o)as being

third order terms, since Z!o)=Yo: Vf,o\1Yn,,YT,,YBo)
and gradients are assumed weak. We note that the left-hand
side of (38) is anaiogous to the left-hand side of (29), and
consequently, (38) could be represented in the form Isee
(33) l

Y L'1) kD,k) . o !,"' (a,k,r) : Ai (a,k),

wherel, (ar,k) is the FT of thelth component of the vector
on the right-hand side of ( 38 ) which has the form

FT[(V(')V)V(t)]"
r: i I dat, dkrlVlt\ (a,,k,) (k, - k,,, ) )Y|) 1ar,kr),r ' 

(41)

FT (:"-v(r)XB(r')
\moc /

: 'n I ar,ak, vl,,(a;,,k1)yB(r'(a.rr,k2) , Gz)trm-c J

where

( 33 )
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B'r)(a,r,,k, ) : (c/ a)kzXB'tt ( ar,kry. (43 )

Also,

0;':tmo/eo)p,,:il ,,.

Taking this into account, after some aigebra we obtain

VL2.,) (@,k): - 'o I da, dU, do- dk2 6(a - o, - o.t.)6m.J

X(k-kr-k2) Eikoz,kz)E, (ror,kt )

@ t@z

Xf - al ,,(a)1.,(tor)kr.," + ar1lr3 fui)1,,

x(ot)k2." I cDzlii(ra2)f", (ror)kr..). (44)

For the noniinear current densityT(2)(r,/) we have

5t2)(r,r) :le,nit>Ylt'* 
) 

e,nuYf\, (45)

and taking into account (30), (31), and (44), we finally
obtain

.,r\ g'.no I
m.J

x (k - k, -y";Ei(@''k')E'(a"k')@{)z

X fo 21,, (ro ) I o, ko r) kr,, + co 1l p (ar r ) I',. (ot) k r.,

- d, (co) 1., (co r) k2," ).
We note that

(46)

I

i !) Qo,k)

.a f
- - i L 

) 
dotdazdk\ dk" 6(o - o, - a)D

X (k - k, - k1)6r" (a.r,k;a-l1,k;)

x E, (ro2,k2) E, (al,,k, ),

at:(a-(ov k::k-kr. G7)

Taking into account the symmetry property e,,,(o,k;or,kr)
: eu,(at,k;a2,kr) [see (A6) ] wecanintroduceanewtensor

57, (Pustovalov-Silin formalism, see Ref. 6) defined as

S4, (al,kiat,,k, ) = 6ii, ko,k:a t,k t) + e,, (rrr,k;ar:,k: ) .

(48)

From (48), it follows that S1t =Ztir j,t, where 6,1r,; is the
symmetric tensor of tensor 6,/,.e

In addition to V:2) we have to know the nonlinear den-
sity n:1) (a;,k), which could be easiiy found from the contin-
uity equation

n*) (a,k) : k 'i:'' (ot,k)/e.m. (49)

To third order the hydrodynamic equation (2) reads

1Yl" _ ,^ y::,XBo r
dt m.c

: - lvlt)v)vy,-

+ 'o v!2)ygrrr
froC

Here again we neglect the terms with Vf\ for the reasons

mentioned above. Using a similar method as in the case of
Eq. (38), we obtain

( vov)v'r) + ( v':,9) v tol

(v:,)v)v:')

- (vf)Y)ytot. (50)

vj,l,, : - 1r,,rol I ar, dk, da, ou"E,(a - a"k -k')E'(a' - oz'kr - k)E'(az'kz)
m; - J at.(ar-a.r)

lk -k, k -k, \,\-5y -5o1 

-*k,.olo,(a-ar)6o, 

- (k, -k1."11n,(to-,or))\ @-at @-@t

',<{@, - ar1)1,. (o, - o)l,o(ror)kr.a * | a,(a, - o.)kr.o[.r.1 ,,(ro) - orl 
",{a )]}.

For the noniinear current/ f '(r,r) we have

i tj>Q.t) : eonrv!,3) (r,r) + eon\tt(r,t)vll)(r,t) + e"n:)G,t)vtt)(r,t).
Using (51), (44), (31), (30),and (49) afterFTweobrain

j,.r.,,(.,k): -ijlrlda,dkrdardk.rE,(a-o,,k-k,)E,(o,-ar,k,-k)E,(roz,k.)m) J o(D2(@-ar)(at,-a1)

X{(ar-ot)1,,(a-ar)k,.ulu,(a)az(kr..-kr..)lo,(a.,, -co)ltljb(k,-kt,o)@tliokD)
+ 6 ib (k" - kr,)a 1l u, (a - a r) + ko - a r) k tl,i (, - ro r) - ot(k o - k r,o)1, (o)

+ ((D - rot)kt.ol",(, - l.or)otrl ,o@))l(o, - rr:)f^ (c,t, - o.)lo,Q,t,)kr."

+ I'", (ar, - la2)kr."rorl o,(a) - 1", (a,l1 - at)kr."rr.trl o,@r)lj.
It is to be noted that ( 53 ) implicitly gives the noniinear dielectnc permittivity to third order E,,,, (o,k;co r,kr;az,kt,p{).

(51)

(52)

(53)
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IV. NONLINEAR MODE-MODE COUPLING EIKONAL EOUATION
Up to this point we have given a quite general derivation which represents the basic methodology in nonlinear plasma

physics. The nonlinear current ( 53 ) is usualiy used for studying the noniinear interaction of plasma waves up to third order,

sultant field consisting of the externai component En ( driver pump ) and the self-consistent component 6,8 ( plasma field ) . In a
triple product of resultant eiectric field, we shall retain only the terms quadratic to Eo and linear to 6.8. This will lead to the re-
lation (see the following) describing nonlinear (E3) coupiing of linear (58) plasma eigenperturbations. Consequently,
taking into account Eq. (9) we have for the tripie product,

E,(ar,kr)E,(o4,k)E,(ayk.)-](Eoe'6" *Erei6').(Eoe-',6" *Ep*',b'),6E0(a,k)

x{5bjf5",6",6(c,t,-ar6)6(kr-h)6(arr+aro)5(kr+h)+6",6o,5(ar+arn)5(k,*ko)6(ar:-ron)6(k,-h)]

+6b,16",6,j6(rD,-as)6(k,-lto)6(a,l:*a.,0)5(k.+h) +6,,6",6(or*a6)6(k, *h)5(a;:-aro)6(k2-h)]

+6b,f6"r6,,6(ar*a)6(k,-ko)6(arrla.ro)5(kr+h)+5",5o,6(atr1a.ro)6(k:*ko)6(a,l:-a.,6)6(kr-h)]).
(54)

- @kr.nf,, (a,l2) f6 (ar)).

where

A,o(at,k) : le,,(ot,k) - c'k'/a'(6,, - k,k,/k ') ]-',
(58)

we obtain noniinear dielectric permittivity (noniinear with
respect to external field E,r,,, and iinear with respect to plas-
ma penurbations, 6E)

t,t(a,k) : e,.,(ot,k) - i[-t* (a,k;a-t * aro,k + lfu)1,.

X(at * aro,k * h)S"r; (o * ro6,k * h;ar,k)

* Sia, (a;,k;a - @s,k - hX," (ar - a.,r,k - ko)

XS"or(a - ao,k - ko;a,,,k) ]

X (Eoe'6. *Ere- '0,),{Eor''" * Ere-'6,)a.

(5e)

Assuming that on\a, from (59) we have

S,,"(o,k:to+ r,,o,k + h) - - +*6,,k^y,^(a,k),
(60)

and for the inverse Maxwell plasma tensor

A,,(ro*a.,o,k+h)

*['--

Utilizing (54) and (53) from (22) we obtain (see also Ref.
l0)

e ,,(a,k) - (c'k'/a,2)(5,, - kikj/k'.)5E,(o,k)
: - 5Sr, (a,k'o - ao,k - lh) (Eue'6" + E,e - '6'),

x.68,(o - ao,k - h) - iSr. (a.r.k:a., + a;n,k + kn)

x (Ere'6" *Ere-'o'),6E,(r,t * too,k + Lol. (55)

Here S,;t is given by ( 48 ) and in explicit form reads

S,y, (ar,k;arr,kr )

: - i (e. / m, ) (a|" / aa ra4) {to rk,l 
^, 

(o4)lu (a,l 
1 )

* @ zk nln, (ro 
1 ; f, (arz ) * @ rkz.nl,, (ar ) fr, (ar, )

* azkr.nl,, (a.r)1", (ro) - rokr.,f n,@r)l r(ro)
(56)

Eliminating 5E,(r,t * ar,k -1- h) from (55) [see Eq. (25) ]

68,(ot+a;o,k+ko)

- - 1r,4.(o * ots,k t k,)S,r, (a * oo,k 1- ko;a;,k)

X(Eoe+ia, a Ere*'u'),6E,ta,k), (57)

_l
at

where

(k t h), (k + h)"
(k+h)'e(ar+aro,k+kn)

c'?rt t hl'?l -,J, 
,u,,(r,t*ar,)- ) )

h)"+
)-

(k

h
I
+

h
(k

(k+
] [r,, 

+ z,o.k + h.r -

[(k + \;ru,1: [ (k t hl Xrr, ]2A= : I * (k + h)3e (o -r a;o,k + ko) f t + hl'][e iot * to6,k+ hl - c'(k + },J'/@ -rrl4 )

Substituting (60) and (61) into (59) we obtain the dielectric permittivity for iow-frequency piasma mode with longitudinal
and transverse electric field. If we are interested oniy in the longitudinal low-frequency (a,l,k) plasma mode, the longitudinal
contraction of (59) has to be evaluated as

(ktkj/ k'1E,,ta,k,r),

which gives the final nonlinear mode-mode coupling eikonal equation
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6(ar,k,r):
e . (ar,k.r ) k'(l(f - h) . .rr l)'

X,(c,t,k,r) p + f,(ar,k,r)] 4(k - \)3e. (o - o6,k - h,r)

+
k'(l(t *Iin).rr,;)2 k'(ot - r.ro)'?(l (k - h) xrm i)'

4(k+ l1)'er(at - ao,k- ko,r) 4(k- h)'[(, - oo)2er(a - oo,k- ko,r) -cr(k-Lo)']
k2(o + (.)o)'?(l(k + h) xrE, i)2

-0. (63)
4(k + ko)'Itr., + to)2er(o * aro,k * h,r) - c?(k+ h)']

Here r., is the vector amplitude of electron osciilations with respect to ions in the magnetic fieid.Bo and the driver pump
electnc field (9). Consequently,

+

+

I ra : t ea(Ene'6") * rr, (E,e'd' ).

To treat arbitrary polarization we can choose 5o=0, 6r : -1. r/2 so that

t rn : I EB(Eo) + iru, (E,),

where

I

(64)

(65)

me

e

ei 1 ... e

m, ro;, - Ol ' m"

ei Oi

m, o4Qof - Al)

ol(a/ - Oi I m, oo(a')o - {ll)

- e I ei I
LK

" *" rDi-Oi m, oi-Ol

o/eio
E,

iE*

cDi - a?

o,
rE, (E) :

m" or(roi - tl!)

- e e"
h-

frn@6 tni(o6

with E=Eo;E,.
Inserting (59) into (29b), we obtain an eikonal mode-

mode coupling equation allowing the low-frequency mode
(a;,k) to have both longitudinal and transverse components
of the electric field. This is also vaiid for high-frequency
modes (o * a6; sidebands ). If the low-frequency mode is

purely longitudinal, the eikonai equation is given by ( 63 ).
According to (63), the low-frequency longitudinal mode is
coupied to mixed (longitudinal and transverse) high-fre-
quency modes (sidebands). Frequency and damping
( growth ) rate of oscillations are found by solving ( 63 ) with

In the opposite case, for relatively long wavelength and
weakly damped modes, the region of transparency is com-
parable to the inhomogeneity scale length, and nonlocal ef-
fects [ (67) and (68) ] are essential.

V. STOKES ANO ANTI.STOKES LONGITUDINAL
SIDEBAND COUPLING

Let us now interpret relation ( 63 ). First, decomposing
the electric field into a longitudinal and transverse compo-
nent

respect to k-. Then

I,'* k-,, (ra,En,k,,, x)dx : " (, * I) ,

, : 
[.',,'Im 

k,,, (a,En,l<n,x)dx

" [,' fi n, k *., (co,E,,kns) dx)-'

E, : (k,k,/k')E, * (6,j - k,kj/k2)Ej,
and inserting it into ( 22 ) ( with D NL :0 ) , we have

( 70)

Integration is over the transparent region between turning
points delined by

Rek;.,(ar,Eo,ko,r):0, (69)

where s denotes a particular branch of oscillations. Relation
(67) is usually called the quasiclassicai quantization rule or
Bohr-Sommerfeld phase integral.

From another point of view, ( 63 ) couid be considered as

a iocal dispersion relation giving the local frequency spec-

trum and the locai growth (damping) rate in the case of very
weak plasma inhomogeneity (kL N,kJ-., ), I ) and relatively
strong damped modes. This is equivalent to considering
ro' t'r : 0andD t : 0as locaidispersion reiationsin (63).
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f (czk2/toz)(|ti - ktki/k') - e,ilEi - 4Ef :0.
(71)

From (71) we see that [ (c]k'/a'116,, - k&J/k') - e ,i)
characterizes the electromagnetic properties of plasma with
respect to the transverse field and *, with respect to the lon-
gitudinal field. Consequently, in (63) the second and third
terms describe the coupling of low-frequency longitudinal

le , (a,k) : 0 ] modes to Stokes' and anti-Stokes' longitudi-
nal modes. The third and fourth terms describe the scatter-
ing of Stokes' and anti-Stokes' transverse modes on the low-
frequency longrtudinal plasma mode. Accordingly, the
longrtudinal resonant interaction in ( 6l ) is defined by

e t'o :0 (72)

and the four wave coupiing equation for resonant modes

Ie (a.r,k,r) -0] is given by

(67 )

(68)
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€ r-kD,k,x) +
y 

" 
ko.k,x) ll + y, (atk,x) 1k 

2

4(k - ltu)'

coupiing reiation was obtained in Ref. 1i using a pondero-
motive force formalism for homogeneous isotropic plasma
with lineariy poiarized electromagnetic waves. Homogen-
eous magnetized plasma was addressed in Ref. 6, but only for
the case @o) O", also using weak turbulence theory.

The possibilities of using Eq. (63) in the treatment of
the interaction of electromagnetic waves with weakly inho-
mogeneous piasma are enornous. It has been used for the
EBT environment in Ref. 12 and in the tokamak environ-
ment in Ref. 13. Stabilization of interchange modes in mir-
rors using Eq. (63) was studied in Refs. 14-16. In addition,
computationai treatment of Eq. (63) would allow treatment
of even more realistic interactions.

Related work to that discussed in this manuscript has

recently been independentiy carried out eisewhere.'' That
work uses heuristic means to obtain some of the general ex-
pressions which are rigorously derived here. However, Ref.
l7 examines applications of the formalism to compare with
previous derivations, and demonstrates agreement in all
cases, thus making a contribution which is complementary
to that ofthe present paper.
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APPENDIX A: SYMMETRY PROPERTIES OF THE
NONLINEAR DIELECTRIC PERMlTTlVlTY r,t,, to... t,

In linear theory for a nondispersive and isotropic medi-
um, the connection between the electric induction (D) vec-

tor and the electric freld (E) is given in the form,
D(r,r) : e (r,/)E(r,r). Here e(r,r) is the dielectric permit-
tivity of an inhomogeneous and nonstationary medium. If
the medium is anisotropic ( external magnetic field ) , the re-
lation is written in tensorial form, D, (r,r) : e ,,(r,t)E,(r,t).
In both cases, however, there is a so-calied local dependence
between D and E (local constitutive relation). In the case of
a dispersive medium, processes in different physical points,
( r,/), are dependent, and the connection between D ( r,t) and
E(r,t) is nonlocal. A generaiization of the above linear de-
pendences gives

ftr
D,(r1) : I dt, I dr, e,, (r,.r,:r.r).8, (r,,r1). (Al )

J-- J

If the medium is weakly inhomogeneous and nonstationary,
(Al ) reducesto ( 15). Inanalogyto (A1 ) and ( 15), inorder
to take into account nonlinearities, we can write expression
(18). In (18) for the case of quadratic nonlinearities
(n :2) we have er,r. describing the influence of the electric
processes in point (rr,rr) on processes in (r,,I,), and pro-
cesses in (r,,/,) on processes in (r,t). However, 8,,,r, de-
scribes a succession of processes in the following form:
(rr,r, ) - (rr,tr) - (r,t). A similar discussion could be per'
formed for cubic (n : 3 ) and higher nonlinearities of pias-

(73)

where the wave four-vector k= =(k -,o * ) is given by
k * : ( k * kn,a + at1,).If oniy the Stokes sideband is reso-

nintle (ot-,k*l) -01, Eq. (73) describesdecayprocess.If
both sidebands are resonant, Eq. (73) describes oscillating
two stream instabiiities (k>ftu) and modulation instabili-
ties ( k 1 kn ), as four wave coupling processes.

VI. FOUR WAVE RAMAN AND BBILLOU!N STIMULATED
SCATTERING

Transverse resonant interaction is defined by

D r =e= _cr(k +k..n,;r/kttah)r:0, D t :Dr,
(74)

and the corresponding four wave coupling equation is given

by

e ,_(a,k,r) -
1," (a;.k.x) [ 1 *.f, @,k,x))k1

4

r..,t ( lt<- Xrr, ])'
I o2 e(a .k
L_

tl2, (
-,x *) - c2k2- )k')-

: Q. (75)
faz* e(a *,k*J -) - czk'* f k'*

If e, (o,k*) corresponds to high-frequency inhomogeneous
plasma modes, Eq. (75) describes four wave Raman stimu-
lated scattering. If, however, e ,(a,kJ) corresponds to low-
frequency inhomogeneous plasma modes, Eq. (75) de-

scribes four wave Brillouin stimulated scattering. In Eq.
(7 5) , e * . - ir the transverse plasma dielectric permittivity
defined by the first term in Eq. (71), describing high-fre-
quency plasma modes. Furthermore, if oniy Stokes'
(D _ -0) oranti-Stokes' (D* -0) components are resonant
in a particuiar svstem. we have Raman and Briliouin Stokes'

or anti-Stokes' (upconversion) scatterlng, respectively, as

the three wave transverse interaction. In the case klll<o, the
lour wave coupling equation (75) can be used for studying
the longitudinal modulation of an incident electromagnetic
wave in a weakly inhomogeneous plasma. The case k 1lg
corresponds to transverse modulation of a driver pump
(self-focusing and/or_fi.]amertation),,

v[. coNcLUSloN . j
In conciusion, we hale given a general mathematical

formalism for the treatment of noniinear interactions of arbi-
trariiy polanzed, finite wavelength eiectromagnetic fields
with weakiy inhomogeneous plasma. The assumption of
weak inhomogeneity enables a WKB trealment of piasma
eigenmodes (Refs. 4 and 5). An inhomogeneous Volterra-
type integral equation in tensorial form I Eq. ( 22 ) ] is treated
using a weak turbulence approximation. Using symmetry
properties of the n -index nonlinear dielectnc permittivity
(Appendix A), a relatively simple mode-mode coupiing re-

lation is obtained. We note that this type of mode-mode

l(,k .tr, )' (ik.'r.rl)r\
\ t-T-t 

-vt\e(a.r-,k-;) e \a*,k*-r) /

(

lk* 1rr3l)2
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D,(a.k) : [- dr, I dk, u,,,,, (ro,k:ar,,k,)
)J
XE,,(ot - co1,k - kr)Ei,{at2,k). (A3)

Similarly, for er,,, we have

llD,(r.r): I dtt I dr,r,,,,,
JJ

ma. Now, naturall)i, appears the question of the reiation be-
tween €-,./, and 6r.r,, etc. The sy[unetry properties of the
noniinear dielectric permittivity could be evaluated from
( 18 ). For the case of €,j,t, we have

liD,(r,t): I dt, I dr,,e ,,,,.JJ
X (r - t1,t - t1,t1- r|,t1- t2)

XE,, (r r,t,)E,. (r2,tz).

After Fourier transtbrmation we obtain

APPENDIX B: A GENERAL EIKONAL TREATMENT OF
THE NONLINEAR PROPAGATION EOUATIONS OF
PLASMA WAVES

Here we use the general eikonal method of Weinbergre
and apply it to the nonlinear propagation equation of plasma
waves ( 2l ) in a somewhat different manner, namely, using
explicitly the language of a multiple space scale perturbation
technique. We start with the integrodifferential equation
(21) in (o,k) space given by (23). Formally, Eq. (23), ex-

cluding the inhomogeneous ( nonlinear D *L ; term, is identi-
cal to Eq. ( 107 ) of Ref. 19. The slow space variation of the
Maxwell plasma tensor M,, {<o,k:pr ) suggests that all quanti-
ties in Eq. (23), in addition to the fast space-time variables
(r,I), have a slow space vanable (t,t;pr). Accordingly, we
formally write .E'(r,l), DL (r,t), D NL (r,r) -a(r,r), where

a (r,t) - a (1,t;pr,p!r,...) :4 ( r,firr,r,,... ).

We seek the formal solution of Eq. (23) in the eikonal ap-
proximation

a(r,t;p,r) -- i lr"A.(prl, t,t + t&(t pr) 
,

e:0

where the eikonal function O(r,pr I is defined by

Y,t/t(t,pr):k(pr).

(81)

(82)

In (82 ) V. denotes the gradient operator with respect to the
fast variable r. Now Eq. ( 23 ) can be rewritten in the form

M,t(r,-N, - ipY,, - "',Pr)Ei(r,t,pr): -eDlL(a4tr).
(83)

In ( 83 ), e denotes the smallness of the nonlinear term. In the
zeroth approximation with respect to p, from ( 83 ) we have

M,i(r, - N,)Ep(o,p.r) : O. (B4)

Considering (84) as an eigenvalue problem we have

M,i (r, - N, ) E p (co,pr ) : M', (o,k( p.r )lE, (ot,ptr ),
(85)

where the eigenvalues ( lor inhomogeneous plasma local ei-
genosciiiations ) are given by det M ,,(to,k( pr )l : 0, which is

actually the expression (29') . In the 1-D case, as assumed in
this paper. this equation uniquely determines k(pr). The
equation for the eigenlunctions (ampiitudes. see also Ref.
20) is obtained as the first approximation with respect to p in
the form ( WKB approximation ) ie

p.Mr(pr,a, - N,)E1(pr)exp[ - iat *;11'(r,p,r))

- pfruM,i (ar,k,pr)V., E, (7-rr)exp[ - iot * itl(t,pr)l
: - eDlt@lrr). (86)

In (86) the derivative of M with respect to pr is neglected.

Although formally the second term on the left-hand side of
( 86) is of the same order as the nonlinear term, in our for-
malism it is neglected. This is a result of the fact that the
noniinear coupling in our case is induced by a relatively
strong driver pump (e > p) and we assumed weak spatial
dispersion. Accordingiy, the space behavior of the ampli-
tude is completely governed by the nonlinear term rather
than by the slow spatial variation ot'plasma. In the opposite

(A2)

(A4)

(A8)

(A9)

(Al0)

X (r - r.., - /:;r, - rt,t) - tt)

x E,. (r r,t..) E,, (r,,I1 ),

and after FT

D (a.k,, : {' a., I aU, u,, ,.t,.,,.k:a - tcr1.k - kl)
J J "JII

XE,.(at - at1,k - kt)Ej,(a-lr,kr ). (A5)

From (A3) and (A5) it follows that

€r,,,(ro,k;eo1,kr) : €,i,i,(o,k;o - rJ1,k - k, ). (A6)

For the three-index noniinear dielectric permittivity we have

e,,, r..,, (o,k:a,,k, ;ar2,k1 )

: €,j, j,t,Qo,k;a - tt2,k - kia; - a-,,,k - k1)

: E,j, j, j,(co,k;crtr,kr;o, - a;,,k1 - k2)

: €,i,i,i,(at,k:a * az - oyk * k. - k1;a;2,k2). (A7)

Finally, as in the case of linear dielectnc permittivitv,

€',1,,..,_....,^(a,k:a,,k,;a",ky...,a,- 1,kn - 1 )

=tt,, ,"1 -"'s' -k:-t''r''-k':"':
- 0)n _, , - k, _ , )

and

R" tr,r,,....r, (r.;,k:ar 1,k,:... ;a, - 1 ,kn - 1)

: R€ €r,r.,...,, 
^( - 

a, - k; - ro1, - k,;...;

-(on_1,-kr_,),

l^ r,,,,,,.....,"(ar,k;ar,,k,;...;a)n -,,k, - I )

- - Im €r,,,.....,.( - ot, - k; - o1, - kri...i

-0)n-,,-k"-1).

The asterisk denotes compiex conjugate. and Re and Im the
real and imaginary parts, respectively. Symmetry properties
of the conductivity tensor in relativistic plasma have been
recentiy addressed in Ref. 18.
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